Valvular Heart Disease

E-chocardiography Journal: Alphabetical List / Chronological List / Images / Home Page

Impact of three-dimensional echocardiography in valvular heart disease.
Current Opinion in Cardiology. 20(2):122-126, March 2005.
Salehian, Omid; Chan, Kwan Leung

Purpose of review: Recent advances in the field of three-dimensional (3D) echocardiography have allowed improved visualization of cardiac structures. These advances have also provided valuable insights into cardiac function. The purpose of this review is to describe the recent developments in 3D echocardiography in assessing valvular heart disease.
Recent findings: Application of 3D echocardiography to valvular heart disease has improved with advances made in both the hardware and software components of 3D ultrasound systems. The most significant advancement has been the development of a matrix transducer that is capable of rapid real-time 3D acquisition and rendering. There have been many studies evaluating 3D echocardiographic assessment of mitral valve disease, aortic valve disease, as well as congenital heart disease using both real-time 3D transthoracic echocardiography (TTE) as well as off-line reconstructed 3D images from transesophageal echocardiography (TEE) using post image processing. More recent studies have combined the structural 3D information with color Doppler 3D imaging, providing qualitative functional information.
Summary: Developments in the field of 3D ultrasound imaging have allowed better qualitative assessment of valvular structures. The addition of color flow Doppler to the 3D imaging has provided improved visualization of regurgitant lesions and holds great promise for improved quantitative assessment of such lesions. The ongoing miniaturization of transducers and improvements in hardware and software components of ultrasound systems will certainly enhance both the ease of image acquisition as well as image quality, which should result in more precise quantitation of valvular dysfunction. However, clinical benefits of 3D echocardiography are yet to be demonstrated in properly conducted clinical trials, which are needed for wider acceptance of this technique.

Clin Cardiol. 1983 Dec;6(12):573-87.
Assessment of valvular heart disease by Doppler echocardiography.
Pearlman AS, Scoblionko DP, Saal AK.

Doppler echocardiography provides direct hemodynamic data that are often complementary to those demonstrated by M-mode and two-dimensional echocardiographic imaging. This relatively new noninvasive technique has a number of important uses in patients with valvular heart disease. In both adults and children, Doppler measures of peak flow velocity through a stenotic valve allow accurate prediction of the pressure gradient across the valve, and the technique has particular promise for screening patients with suspected aortic or pulmonic stenosis. In patients with mitral stenosis but parasternal short-axis images of limited quality, Doppler velocity measures can provide novel data about the pressure gradient and mitral orifice area. Doppler techniques can also provide direct evidence for or against the presence of valvular regurgitation, and several approaches allow clinically useful estimation of the extent of aortic, mitral, or tricuspid regurgitation. In patients with known disease of one cardiac valve, Doppler is accurate for evaluating the integrity of a second valve. Finally, Doppler techniques have great promise for defining the nature, and perhaps the severity, of suspected prosthetic valve malfunction. Hence, we believe that Doppler echocardiography should become a routine part of the noninvasive evaluation of patients with known or suspected valvular heart disease.

Back to E-chocardiography Home Page.
The contents and links on this page were last verified on April 2, 2005.